Aligning IPD Approach with BIM for Efficient Construction Projects

It is expected that by year 2040, with an increase of 32% as compared to year 2012, commercial buildings will occupy more than 109 billion square feet of floor space. This includes commercial spaces like schools, hospital, churches, warehouses, offices etc. This rapidly increasing commercial construction projects are putting human life on the planet in harm’s way. Having said this, we cannot even imagine the amount of waste it will generate, the delays that will cost double than planned and above all, it will hit hard on suitability. You will need an approach that sets the terms right along with integration of BIM for commercial building construction.
Setting the goals straight apart, unlike any other project efforts, Integrated Project delivery (IPD) creates a unique bond from the very first day of planning stages, binding all major project stakeholders including architects, owners, managers, engineers, contractors and subcontractors. Professional associations like AIA and AGC have stepped up to create standards and guidelines to be used in the Integrated Project Delivery process. 
So let’s understand what exactly should be expected from IPD.
  • Stakeholders come together to evaluate multiple solutions that can enhance the quality of the product. This will simplify the process thereby minimizing the errors and re-designing problems.
  • All evaluations from stage one must be incorporated in the design process. Sustainability goals are clearly defined with incorporating code regulations in design phase itself. If you plan your project meticulously with the Integrated Project Delivery it will help in cutting down the waste and help save on budget.
  • Prospects to use accelerated and lean construction methods on an end-to-end as well as on a per-phase basis (thus increasing overall cost and time savings). Parallel construction project scheduling is quite a chance compared to traditional project delivery.
In IPD; BIM is the essential platform for enabling 3D model integration and exchanging information among team members. In the IPD model BIM technologies sit above an intranet which serves as the project’s base IT infrastructure. It is then digital modelling which drives innovation in the project. To this end the IPD documents crafted by the AIACC mandate and promote the full scale implementation of digital technologies. 
For example, contract E 202 2008, the BIM Protocol Exhibit, explicitly encompasses a range of acceptable uses for BIM including: model ownership, model responsibilities and authorized uses including cost estimating, construction scheduling, documents, shop drawings and project adaptations.
Benefits of Integrated Project Delivery - IPD:
  • Planned and predicted outcomes, risks and gains with help of open collaboration
  • Planning of all relevant aspects of the construction process known as representation
  • Assessment of construction results with help of detailed analysis
  • Overall collaboration resulting in higher standards
  • Rapid detection and resolution to fabrication procedure issues
  • Precise Contract documentation for all stakeholders to avoid construction process pitfalls
  • Overall collaboration resulting in better and more precise job estimates
  • Diminished errors, omissions and disputes pacing up the construction process, resulting in cost efficiency
Model tenure is recognized in early stage workshops and is critical to the success of the project. Level of detailing- from LOD 100 to LOD 500, holds quite an importance depending on members capacity to detail it. The members with precise and strongest BIM capabilities are often the ‘Model Owner’ irrespective of their role in team or firm. Determining time and cost, schedule sequencing and cost estimating is linked to the 3D model and constantly updated to mirror the assessed cost of the planned design.
It will be fair to say that IPD can be looked upon as a procurement model with all parties equally responsible for any risk that falls upon. Risks are further coped up using contracts that mandate the BIM usage among all involved.

Structural 3D Modeling; Lifeline for Construction Projects

The structural engineer deduces the architectural design to understand the structural project; & make a particular analytical model which establishes a structural representation that fits into the total design. 
Structural 3D modeling is an integral part of building design and hence; it becomes extremely necessary to develop a high quality structural design, as the building performance heavily relies on the internal structure. 
With the shift from CAD to BIM, it’s important for structural engineers to make this transition not just for huge projects with multiple complexities, but for day to day basis as well. 3D modeling generates wider scope of transparency and minimizes the risk.
Why structural 3D modeling is important?
BIM is one of the significant factors apart from integrated project delivery and sustainability in any construction undertaken today. It aids in obtaining all-inclusive information pertaining to building designs such as architectural design, and also coordinates structural and MEP elements, position of fittings prior to construction.  
GA – general assembly drawings: It’s quite evident that 3D model generates interactive views and section in no time. Though if you are an adamant traditional follower you would very well say 2D GA drawings are just the same, but I would argue that 3D gives more refined views and clarity to the construction stakeholders in various discipline (e.g.  Foundations, steel structure, precast concrete, cladding,) and can be grouped in layers or separate views.
Structural 3D and Structural steel shop drawing are too important to leave a window for error. Structural steel shop drawings include wide-ranging data related to prefabricated elements and is developed by detailers, contractors, fabricators and even sub-contractors. So shop drawings will provide the stakeholders with detailed information of the concerned object including shape and size of all the elements, followed with dimension to every individual element, fabrication process of parts and elements, and most importantly how all the elements will be placed together, etc.
Structural shop drawings also offers detailed sequential description of construction phase such as floor plans, elevations, ceiling planes etc. If you are renovating any commercial or residential building you may need construction drawings. Having said that; 2D construction drawings obtained from 3D models help in such projects by giving an estimate of building plan. 

Not only that, you can get parts, DXF drawings and complex wooden structures form 3D models as well. BIM assists the structural engineers in generating top notch structural 3D models for building project that can later be linked to MEP model for creating final coordinated model.
BIM level 2 mandate has made several organizations establish a specific BIM framework and how can it be implemented. Usually structural engineers contribute to a part of 'the BIM' in accordance with other disciplines, who will also contribute their part. 
In the structural engineer's area, this data, which includes the model, or BIM, will usually be in the form of: 
(a)  Geometrical structural models, probably in form of an integrated part of a bigger building model
(b)  Finite Element models based on calculations and analytics
(c)  Documentation backed up with several other specifications 
No wonder if 3D modeling becomes a compulsion for structural engineers, working on any micro or macro project in near future.