Are You Choosing the Right 3D Printing Technology for Your Product?


The fiercely competitive market requires manufacturers to keep their products innovative, and as such, it is critical to choose the right prototyping process during the product development cycle. Unlike traditional prototyping techniques like injection molding or CNC machining, there is a tremendous growth in the usage of 3D printing or rapid prototyping technologies. This technique makes use of 3D CAD models to develop a product by printing the material layer by later. One of the significant benefits of 3D printing is its capability to develop complex parts, which is impossible with the traditional techniques.

The advancement in this technology has enabled multiple 3D printing processes to develop prototypes, and it is often difficult for the design engineer or the manufacturer to choose the right one. Let’s take a look at the benefits and limitations of each of these technologies, so that you can select the right one for your prototyping requirement.

1. Fused Deposition Modeling (FDM)

The FDM technique involves melting and solidifying of thermoplastics resins like ABS or polycarbonate, layer by layer to develop a finished part. The prototype developed using this technique, is stronger as compared to other rapid prototyping techniques; however the surface finish quality is not good.

Key Parameters:
Price: Moderate
Strength: Low
Surface Finish: Rough
Functional Testing: Limited


2. Stereolithography (SL)

This technique makes use of a laser which is projected on a pool of liquid resin to form the part. With each layer completion, the part is lowered in the pool to solidify the next liquid layer through the laser. Parts developed using Stereolithography possess good surface finish but are relatively lower in strength as compared to other 3D printing techniques.

Key Parameters:
Price: Moderate
Strength: Low
Surface Finish: Excellent

Functional Testing: Limited

3. Selective Laser Sintering (SLS)

SLS involves the similar process to that of Stereolithography. The only difference is that SLS makes use of a CO2 laser to fuse metal powder and form the solid part. The major advantage of this technique is that the parts produced have better strength, and as such it is mostly used to develop functional prototypes as well as for actual production. Although the surface finish is bit rough, finishing process can assist in creating a good surface quality, high strength prototypes.

Key Parameters:

Price: Moderate
Strength: Moderate
Surface Finish: Moderate
Functional Testing: Limited


4. PolyJet

This method makes use of a print head to spray photopolymer resin layers, which are cured according to the part shape using UV light. With PolyJet, the layers printed are very thin; hence the resolution is excellent as compared to other methods.

Key Parameters:
Price: Moderate
Strength: Low
Surface Finish: Good
Functional Testing: Not Fit for Testing


5. Digital Light Processing (DLP)

In this technique, a solid part is digitally sliced into layers which are then projected on the liquid photopolymer surface. The UV light solidifies each later of the liquid polymer and process is repeated in small increments with each layer image. Once the layers are hardened, rest of the liquid polymer is drained. This technique is more suitable to develop small parts that do not require good surface finish quality.

Key Parameters:
Price: High
Strength: Moderate
Surface Finish: Moderate
Functional Testing: Limited


6. Direct Metal Laser Sintering (DMLS)

DMLS is useful to develop metal prototypes and is similar in process to that of the SLS. This technique provides near identical material properties to that of the part developed using CNC machining, since the same metal powder is used to print the part. Thus, the prototype can be used for further operations like shaping, milling, drilling or reaming. Also, surface finishing processes like anodizing, electro-polishing or powder coating is compatible with DMLS parts.
 
Key Parameters:
Price: High
Strength: High
Surface Finish: Moderate
Functional Testing: Limited


Interested in developing a prototype for your product using rapid prototyping? Contact us with your project details at info@hitechcaddservices.com. We deliver services like 3D modeling, reverse engineering and rapid prototyping to product manufacturers globally.

Hiral Patel

Hiral Patel is a news editor and has been contributing to the CAD industry since last 7 years. She mainly writes about the application of BIM across Architecture, MEP and Structural, Mechanical sectors. Her focus is towards encouraging construction companies, sub-contractors and architects to adopt right technologies to improve efficiency and profitability.